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Abstract: An attempt is made to calculate the reaction cross section for hot reactions of the type ZY + X - * 
ZX + Y, where X and Y are isotopes. For this purpose, a model is assumed which permits a simple (classical) 
treatment of the three interacting particles. The reaction cross section o-(is) is obtained by averaging over initial 
conditions selected in a random manner, by the Monte Carlo method. The results are compared with those ob­
tained by Karplus, et al., for reactions H2(D2) + T -»• H(D)T + H(D) and with experiment. In all cases a good 
fit is obtained. 

I. Introduction 

Two different models have been used to investigate 
hot displacement reactions of the kind 

(ZX + Y 
ZY + X —> 1 (1.1) 

(.YX + Z 

taking place in the gaseous phase. In this reaction X is 
a hot atom moving with relatively high translational 
energies (above the threshold energy of the reactions 
under consideration) and ZY is a molecule which will be 
assumed to be static. The two parts of the original 
molecule are atoms or groups of atoms which can be 
assumed, in a first approximation, to behave as a single 
particle. 

Both models were used to compute the total reaction 
cross section <r(£) as a function of the kinetic energy of 
the hot atom. 

The first model, suggested by Wolfgang and Cross2a 

and somewhat improved by Hsiung,2b is based on two 
principal assumptions: (a) the displacement reaction 
takes place by a direct billiard-ball-type collision be­
tween the projectile and the target atom; (b) the reac­
tion will take place provided the target atom receives 

(1) Part of a study to be presented to the Hebrew University, Jeru­
salem, by M. Baer, in fulfillment of the requirements for a Ph.D. degree. 

(2) (a) R. J. Cross and R. Wolfgang, J. Chem. Phys., 35, 2002 (1961); 
(b) C. Hsiung, Ph.D. Dissertation, University of Michigan, 1962. 

kinetic energy exceeding the binding energy between 
itself and the radical, while the incident hot atom is left 
with less kinetic energy than its binding energy to the 
radical. 

The second model, which is due to Karplus, Raff, 
Porter, and Sharma,3-7 was originally proposed for the 
analysis of collision reactions in experiments with 
crossed molecular beams and was lately applied to hot-
atom chemistry as well.8 Karplus and Raff computed 
differential cross sections for the reaction 

CH3I + K — > KI + CHs (1.2) 

using a semiempirical potential field which was originally 
proposed by Blais and Bunker.9'10 Concerning the 
reaction 

H2(D2) + T —> H(D)T + H(D) (1.3) 

Karplus, Porter, and Sharma calculated <r(£) using a 
semi-quantum mechanical potential field computed by 

(3) M. Karplus and L. M. Raff, J. Chem. Phys., 41, 1267 (1964). 
(4) L. M. Raff and M. Karplus, ibid., 44, 1212 (1966). 
(5) M. Karplus, R. N. Porter, and R. D. Sharma, ibid., 40, 2033 

(1964). 
(6) M. Karplus, R. N. Porter, and R. D. Sharma, ibid., 43, 3259 

(1965). 
(7) L. M. Raff, ibid., 44, 1202 (1966). 
(8) M. Karplus, R. N. Porter, and R. D. Sharma, ibid., 45, 3871 

(1966). 
(9) H. C. Blais and D. L. Bunker, ibid., 37, 2713 (1962). 
(10) H. C. Blais and D. L. Bunker, ibid., 39, 315 (1963). 
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position of Z at t = 0 

\ „ * / P position of X at t - 0 

Figure 1. Coordinate space system of the three particles X, Y, and 
Z at time t = 0. The axis of the molecule ZY is along the z axis. 

Karplus and Porter.11 Lately this potential field 
was modified by Shavitt, Stevens, Minn, and Karplus,12 

and using this potential field Shavitt13 has computed 
rate constants for the exchange reactions (1.3). Once 
given the potential field, the motion of each of the par­
ticles in this field is determined by the classical equa­
tions of motion and by the initial conditions. 

The differences in the above two approaches reflect 
the different purposes for which they were devised. 
The first model aimed at examining whether the hot 
reaction is a simple displacement reaction resulting 
from a direct billiard-ball-type collision between the 
atoms X and Y. The criterion according to which this 
assumption was tested was the existence of an isotope 
effect in the two reactions 

CH4(D4) + T —>• CH3(D3)T + H(D) (1.4) 

However, the model turned out to be an oversimplifica­
tion and the calculations disagreed with the experimental 
results. It was therefore discarded by the authors 
themselves.2* 

The second model had a much broader aim, namely to 
describe the reaction process fully and to determine a 
variety of properties found in experiment. The results 
were in good, and sometimes even excellent, agreement 
with experiment, but the computations involved were 
very lengthy and complicated. 

The present work attempts to calculate the cross sec­
tion for exchange reactions by assuming a model which 
permits a semi-analytic treatment of the behavior of the 
three particles involved in the reaction.14 This model 
is related to the one-dimensional model treated by 
Mazur and Rubin15'15 in that the potential field as­
sumed is composed of cutoff potentials; however, the 
model is three dimensional and this extension obviously 
complicates the whole treatment. The computations 
involved are nevertheless comparatively simple and 
short. Another advantage of this model is that it can 
be used for a rather large variety of exchange reactions 
in which the radical is an atom or a group of atoms 
which can be considered as a single particle, and Y and 
X are isotopes. The model is tested by comparing the 
reaction cross section for the reaction (1.3) with those 
computed by Karplus and Porter,11 as well as with ex­
periment. The comparison with experiment is through 
the reaction integral R defined as 

(11) R. N. Porter and M. Karplus, J. Chem. Phys., 40, 1105 (1964). 
(12) I. Shavitt, R. N. Stevens, F. L. Minn, and M. Karplus, ibid., 

48, 2700 (1968). 
(13) I. Shavitt, ibid., 49, 4048 (1968). 
(14) M. Baer and S. Amiel, Israel J. Chem., 7, 341 (1969). 
(15) J. Mazur and R. J. Rubin, / . Chem. Phys., 31, 1395 (1959). 
(16) R. J. Rubin, ibid., 40, 1069 (1964). 

R - f fW (1.5, 
The reaction integral for these two reactions has been 
determined experimentally by Seewald, Gersh, and 
Wolfgang.17 

In section II, a description of the model is given, in­
cluding a description of the reaction process. The 
theoretical and the experimental results are compared 
in section III and the conclusions summarized in sec­
tion IV. 

II. The Model 

1. The Coordinate System and Initial Conditions. 
Three particles, Z, Y, and X, take part in the reaction. 
We shall treat the reaction 

ZY + X —>- ZX + Y (II.l) 

where Z is the radical with a mass M, Y is the target 
atom with mass my, and X is the projectile with mass 
mx. The origin is assumed to be at the center of mass of 
the system ZY and the axis of the molecule to be along 
the z axis. The distance between Y and Z at time t = 
0 is L, and the projectile X is at the point R, where R 
is given, and the two other spherical polar coordinates 
9 and \p which determine the direction of R are chosen 
at random (see Figure 1). Thus, at time t = 0, the 
position coordinates of the three particles are 

Y ( ° ' ° - -Mf^ £ ) <"-2> 
X (R sin 9 cos <p, R sin 9 sin <p, R cos 9) 

The initial momenta of Z and Y are taken as zero. 
This assumption might influence the results at the very 
low part of the reaction zone, but its effect is negligible 
on the whole. As for the projectile, one finds that for a 
given initial kinetic energy E, the momentum P takes 
the form 

Px = P(cos 9 cos <p sin 5 cos r\ — 
sin f> sin 8 sin rj + 

sin 9 cos (p cos 5) 

Py = P(COS 6 sin <p sin 8 cos -q + 
cos ip sin 5 sin rj + (H.3) 

sin 8 sin <p cos 5) 

Pz = P(—sin 9 cos r\ sin 5 + cos 9 cos 5) 

where 

P = (2mJE)l'> 

and the angles 5 and rj are spherical angles fixing the 
direction of the vector P in a coordinate system in 
which R is in the direction of the z axis. These two 
angles are selected at random from their respective dis­
tributions as 9 and <p. 

We note that out of 18 initial conditions, 14 are fixed 
and 4 are determined at random. Of the latter, the 
two angles <p and rj are chosen from a distribution be­
tween 0 and 2ir, 8 is selected from a distribution between 
0 and IT weighted by sin 9, and 5 is selected from a 
distribution between TT/2 and ir weighted by 2 sin 5 cos 

(17) D. Seewald, M. Gersh, and R. Wolfgang, ibid., 45, 3870 (1966). 
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5. The selection of 6 is accomplished by taking cos 6 
to be uniform — 1 and 1 and finding 9 from this cosine 
value, and the selection of 8 is performed by taking cos2 

8 to be uniform between 0 and 1 and calculating 5 from 
the negative square root of cos2 5. 

2. The Potential Energy Field. As far as the co­
ordinate system and the initial conditions are con­
cerned, we have seen that Y and Z, the two components 
of the original molecule, were treated symmetrically. 
In order to preserve this symmetry in describing the 
potential energy field, the coordinate space will be 
divided into two parts by a plane perpendicular to the 
molecule axis and intersecting it at the midpoint. Thus, 
any collision between X and YZ that happens to occur 
above that plane will lead only, if at all, to the reaction 

ZY + X ZX + Y (H.4) 

whereas if the collision happens beneath that plane, the 
only resultant reaction will be 

ZY + X - YX + Z (H.5) 

Therefore, in the special case where Z and Y are iden­
tical atoms, the computations are performed only 
once, and the results are multiplied by 2. 

The potential energy field assumed in this model is 

V(r%,ry,rxy) = Vx(rx,ry) + Vy(ry,rx) + 
Vx,y(rx,ry) + K117Ov) ( " ^ ) 

where rx is the distance between Z and X, ry is the 
distance between Z and Y, and rxy is the distance 
between X and Y. 

Vr(ry,rx) and Vx(rx,ry) are two potential wells which 
replace the ordinary Morse potential of the target 
molecule ZY and of the newly formed molecule ZX, 
respectively; thus 

i0, ry > R7; for any r% 

- V07, Py < ry < R7; rx > Rx (II.7) 
c°,ry < Py; for any rx 

and 

fO, r% > Rx; for any ry 

Vx(rx,r7) = \-V,x, px < rx < Rx; ry > Ry (II.8) 
(°°, rx < Px; for any ry 

The third term represents the potential when both 
isotopes X and Y are in close proximity to Z; thus 

Vx,y(rx,ry) = 
• Vo, Px < rx < Rx 

[0, elsewhere 
Py ^ Ty ^ Ry (II.9) 

The fourth term stands for the repulsion between X 
and Y and replaces the exponential term appearing 
in the Blais-Bunker potential 

V (r -> — ; "" > r*y < Pay y"V"> JO, rxy > pxy 
(11.10) 

This potential field is assumed to be valid as far as 
reaction II.4 is concerned, i.e., if the collision takes 
place above the mentioned plane. In reaction H.5 
the index Z replaces the index Y. Part of the param­
eters are held fixed during the calculations, whereas the 
others are assumed to be a function of the initial energy 
E of X. In this sense, it seems that the potential energy 

field is not conservative. However, as we assume it to 
be dependent only on the initial energy E, it follows 
that for a given initial energy the potential V(rx, ry, r^) is 
conservative and the laws of mechanics can be applied. 

The distances Ry and Rx stand for the region of 
attraction between Z and Y and between Z and X, 
respectively (see Figure 2). Both are estimated from 
the respective Morse potentials. py fixes the region of 
repulsion between Z and Y and is estimated from the 
Morse potential as well. The depths of the potential 
wells F0x, V0y are taken to be the depths of the respec­
tive Morse potentials 

V(T7) = K0y(l - e~a^*-r°*)2) - V0y (11.11) 

V(rx) = F0x(I _ p-ai{r* • roO2 ' ') - K0x (11.11') 

We assumed that Y and X are isotopes; therefore the 
two Morse potentials are identical and yield Rx = R7 

and K0x = V0y. As for V0, it is assumed in that special 
case to be equal to V0x. This choice of V0 means that 
as long as the fourth term in the potential field (eq 
II.6) is ignored, the saddle point region which appears 
in every potential energy surface is not apparent yet. 
It therefore turns out that the only term responsible for 
this saddle point region is the fourth term, i.e., the 
term that yields the repulsion between X and Y. The 
distance pxy which appears in (II. 10) is assumed to be 
energy dependent and will be determined by the equa­
tion 

' (T%7)\Txy - px? 
mv 

mx + m 
E = O 

where V(rxy) is chosen to be of the form 

V(rxy) = E^e-"^-^ 

(11.12) 

(11.13) 

In this potential a is identical with a0x which appears in 
the Morse potential (II. 11'). The distance r0 is defined 
as the closest approach between X and Y in the linear 
configuration Y-Z-X for which a reaction is still not 
possible. The reason for considering the linear config­
uration originates in the fact that the minimum-energy 
path lies entirely in this configuration. Thus, if X 
succeeds in approaching Y in the linear geometry up to 
a distance that is smaller than r0, then a reaction does 
occur. This closeness of approach can be achieved 
only if the reduced particle X-Y has, in the respective 
center-of-mass system, a kinetic energy equal to or larger 
than Eax. Since at time t = 0 the only particle possess­
ing kinetic energy is the projectile and since the mini­
mum energy required for performing the reaction is £ a 

(the threshold energy), we can easily derive the connec­
tion between E.x and E1,. 

= F my(mx + my + M) 
" \mx + my)(my + M) 

(11.14) 

We notice that whereas a and E&x are well determined, 
r0 is not and will be computed by "trial and error." 

It remains to deal with px which determines the region 
of repulsion between Z and X. This distance is the 
second energy-dependent parameter and will be ex­
tracted from the equation 

V(rx)\ 
M 

1"-»- M + m 

where V(rx) is given by eq II. 11'. 

E = O (11.15) 
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Figure 2. Potential energy surface for the linear configuration. 

For a given initial energy E, the potential field in the 
linear geometry is shown in Figure 2. 

We notice that the potential field defined is composed 
of cutoff potential terms. However, in order to con­
serve the soft nature of the interaction between the 
hot particle and the molecule, those components of the 
potential with which the hot atom may interact while 
still in possession of its initial kinetic energy E were 
made energy dependent. This requirement brought 
into that category the radius of repulsion between X 
and Y, i.e., pxy and the radius of repulsion between X 
and Z, viz. px. 

3. The Reaction Process. In order to describe the 
reaction process we shall refer to the linear configura­
tion. Since the potential energies in the different 
regions are constant, the relative motion of the three 
particles can be characterized by a rectilinear motion of 
the configuration point inside the different regions of 
the rx, ry space.15,16'18 The transformation from the 
system of three "linear" particles to the configuration 
point system is accompanied by transformation from 
the rectangular coordinates system (rx,ry) to another 
rectangular system (Sx,Sy) where the distances rx and ry 

are skewed. The transformation from (rx,ry) to (Sx,Sy) is 

mx mv 

s L_ 
y M + m. 

[myM(ms + my + M)]l,\ (11.16) 

As a result of this transformation, the five lines 
which define the potential energy surface, rx = px, 

into the lines 
Py; = Ry, and ry = px 

Sr = (^tZ^^iS. 
mxm„ 

rx transform 

Px) 

S7 = 
(M(M -f- mx + my) 

mxm„ 

7 M + mv 

fmyM(M + mx + m. 
K mx 

X 1 A 
) (Sx - Rx) 

Py (H.17) 

1 (myM(M + wx + m. 

M + m„ f R, 

Sy = 
(M(M+ mx + my)y* _ 

respectively (see Figure 3a and b). 
(18) S. Glasstone, K. J. Laidler, and H. Eyring, "The Theory of Rate 

Processes," McGraw-Hill Book Co., Inc., New York, N. Y., 1941, p 102. 

Figure 3. Skewed form of potential energy surface in SX,S 
coordinate system (linear configuration). 

We recall that since px and pxy are energy dependent, 
the two lines (ac) and (cd) are energy dependent too and 
change their positions accordingly. 

For low energies, the skewed line (ac) is too close to 
the corner (e), and the configuration particle (which 
started at point A) hits this line and is reflected back 
into region I (see Figure 3a). As the energy increases, 
the line (ac) moves away from the corner (in such a 
manner that the angle of inclination is conserved), 
thus increasing the gap through which the particle is 
supposed to move into region II. The lowest energy 
for this is the case is E11, the activation energy of the 
reaction (see Figure 3b). 

The nonlinear, or the general, case was treated by a 
computer. To do this, a program was written com­
puting the relative velocities and positions of the three 
particles following each of the two-body (hard-sphere) 
collisions. A reaction will occur if Y reaches the 
boundary of attraction before X does so, and if the 
translational energy Exz of the reduced particle X-Z 
fulfills the condition 

Exz < ^ox/cos2 5 

where 5 is the angle of collision, i.e., the angle between 
the trajectory of the reduced particle and the radius of 
the square well at the point of contact. This condition 
is derived by applying the laws of conservation of 
energy and momentum for two particles in a 
square well of depth F0x. This means that for the 
particle to be able to get out of the square well, not only 
should its kinetic energy be higher than F0x but the 
"component" of the kinetic energy along the perpen­
dicular to the potential well should also be higher than 
' O x . 

4. Computation of the Total Cross Section. If R is 
the initial distance between X and the center of mass 
of the two particles YZ and if P(E,d,<p,5,r]) is the prob­
ability of obtaining a reaction when the initial energy of 
the projectile is E and the initial angles are 8, 5, and t), 
then the total reaction cross section is given in the form 

/»02 ntpi /*fa /»T)2 

(7(E) = ITR2 I I I P(E,d,<p,5,v)sind 
•J &i %J <pl a/ Sl *s T)I 

dd r ^ 2 sin 5 cos S d S ^ (11.18) 

where 6t, <pit Su and r)t (i = 1, 2) are defined through 
the condition 

P(E,e,P,5,v) = 

U0l<6< <?2, (Pl < <P2, 
S1 < 5 < S1, 

Vi < V < V2 (11.19) 
0, elsewhere 
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100 

Figure 4. Total reaction cross section as a function of tritium 
energy in the laboratory system for the reaction H2 + T -*• HT + H: 
curve, results of Karplus, et al.; points, present model. 

5 IO 
Tritium Energy E(eV) 

Figure 5. Total reaction cross section as a function of energy for 
the reaction D2 + T ->• DT + D: curve, results of Karplus, et al.; 
points, present model. 

The limits of the integration are functions of E and of 
other magnitudes denning the reaction. The integra­
tion is, of course, performed numerically, using the 
Monte Carlo method. If, for a given E and R, one 
gets from N trajectories, TV1. reactions, then a(E) takes 
the form 

(7(E) = Tri?2 

N 
(11.20) 

<T(E) is, of course, independent of R. 

III. Calculation and Results 

As concrete examples for testing the model, we chose 
the various (H2,H) systems, viz. (H2,T), (D2,T), and 
(HD,T). The three systems differ only in the masses 
of the two atoms of which the hydrogen molecule is 
composed, whereas the potential field is assumed to be 
the same. 

The total cross section cr(E) was computed using the 
following numerical values: V0 = V0x = V0y = 4.4 
eV;11 a = 1.89 A"1;11 R = 3 A; L = 0.75 A;11 Rx = 
Ry = 1 A; py = 0.4 A; r0 = 1.85 A; Eax = 0.21 eV. 
The values of r0 and Eax were determined using the 
experimental value of the threshold energy EB for the 
reaction 

H2 + T ' HT + H 

found by Kuppermann and White,19 viz., Ea = 0.33 
eV. Since the same values of E3x and r0 were used for 
all the systems, it is possible to derive the threshold 
energy for the other reactions under discussion by the 
use of eq II. 14. Thus, for the reaction 

D2 + T —*- DT + D 

the value of Ea = 0.30 eV is derived; for the reaction 

HD + T - HT + D 

the value of E91 = 0.27 eV is derived; and for the reaction 

HD + T — > DT + H 

the value of Ea = 0.40 eV is obtained. 
Although this model yields the threshold energies of 

the last three reactions, some caution must be taken 
since they were obtained neglecting the zero energy of 
the respective target molecules. 

Figures 4 and 5 show the total reaction cross section 
cr(E) as a function of E for reactions 1.3. The curves 
are those computed by Karplus, et al., whereas the 
points represent the results of the present computations. 

(19) A. Kuppermann and J. M. White, J. Chem. Phys., 44, 4352 
(1966). 

HD + T — • D T + H 

HD + T — • HT + D 

J i I i i i i I 
5 IO 

Tritium energy E(eV) 

Figure 6. Total reaction cross section as a function of energy: 
( ) H D + T - * H T + D; ( ) HD + T — DT + H. 

We notice that the fit for the (H2T) system is excellent. 
As for the (D2,T) system, it seems that the present cal­
culation yields a somewhat larger cross section, but 
again the fit is good. 

Concerning the comparison of the theory with experi­
ment, the only experimental results relevant to these 
curves involve the concept of the reaction integral R. 
The ratio of reaction integrals RHJRB1 predicted by the 
present model is 1.15; the theoretical calculation of 
Karplus, et al., yields the result of 1.37, while the ex­
perimental value is 1.15.20 Another system for which 
the comparison with experiment is possible is the 
(HD,T) system. Seewald and Wolfgang20 found the 
ratio of the reaction integrals RHT/RDT to be 0.62 ± 0.06. 
The present model yields the result of 0.89. The total 
reaction cross section as a function of energy for these 
reactions is given in Figure 6. 

IV. Conclusion 

The model discussed in this paper enables the com­
putation of hot displacement reaction cross sections for 
reactions of the type ZY + X -*• ZX + Y, where X and 
Y are isotopes and Z is an atom or group of atoms which 
is believed to behave as a single particle. The model 
follows the general lines of the model assumed by Kar­
plus and Raff, but the different components of the 
Blais-Bunker potential used by Karplus and Raff are 
replaced by cutoff potentials, thus permitting a relatively 
simple treatment of the three atoms X, Y, and Z, during 
the reaction process. In this sense the model is closely 
related to the kinematic model of Suplinskas.21 How­
ever, the main difference between the present model 
and the kinematic model stems from the fact that part 

(20) D. Seewald and R. Wolfgang, ibid., 46, 1207 (1967). 
(21) R. J. Suplinskas, ibid., 49, 5046 (1968). 

Baer, Amiel / High-Energy Displacement Reaction Yields 



6552 

of the parameters determining the potential field, which 
governs the motion of the particles is assumed to be 
dependent on the initial energy of the hot atom X. 
Doing this we reproduced what the hot particle "sees" 
from the true surface while possessing its high initial 
energy. This assumption has fully justified itself, be­
cause in contrast to the kinematic model, the present 
model yields a good fit with the curve for the reaction 
D2 + T -*• DT + D computed by Karplus, et ah, and 
also the right isotopic effect for the reactions HD + T 
-*• H(D)T + D(H). For the respective isotopic ratio 
RHT/RDT we derived the value of 0.89, the experimental 
value is 0.62 ± 0.06, and Suplinskas' value is 1.6. 

The good fit obtained with the theoretical calcula­
tions of Karplus, Porter, and Sharma and with the 
different experiments indicates that the main repulsive 
interaction during the reaction process is between the 
hot atom and the atom to be replaced, viz., atom Y. 
The nature of this repulsion is not of a pure billiard-

In a number of a priori and semiempirical methods, of 
which the extended Hiickel method2 is the best 

known, one calculates molecular binding energies by 
subtracting the electronic energy (sum of orbital con­
tributions) of the molecule from the sum of the elec­
tronic energies of the atoms, without considering the 
internuclear repulsion. If we accept the argument that 
the parameterization in the method effectively simulates 
a Hartree-Fock calculation, the "electronic energies" 
are really sums of orbital energies. To get the true 
electronic energies of atom or molecule, one must sub­
tract off in each case the interelectronic repulsion, which 
is being counted twice. Thus the above recipe will be 
valid if 

^NN « VeiT - 5 X e
A = AVee (1) 

A 

where Kee
m and Fee

A are the interelectronic repulsions 
(expectation values) for the molecule and for atom A, 
and F N N is the internuclear repulsion.3 The binding 

(1) Research supported by the National Science Foundation under 
Grant No. GP-5861; correspondence should be addressed to Chemistry 
Department, Syracuse University, Syracuse, N. Y. 

(2) R. Hoffmann and W. N. Lipscomb, J. Chem. Phys., 36, 3179 
(1962); R. Hoffmann, ibid., 39, 1397 (1963). 

ball type; however, it is not of too soft a nature either, 
since, in contrast to the hard-sphere approximation, 
the energy-dependent hard-sphere approximation yields 
the correct results. 

The two main features of this model consist (1) in its 
being easily handled since the calculations involved are 
short (about 5 to 10 min for each curve) and (2) in its 
applicability to a large variety of reactions, since the 
potential field assumed is constructed using the experi­
mental value of the threshold energy for the reactions 
and other parameters derived from the Morse potential 
of the molecule ZY. 
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energy may be orders of magnitude smaller than KNN. 
Thus the error in eq 1 must be small {i.e., of the size of the 
binding energy itself) if reasonable binding energies are 
to be obtained from a wave function which is reason­
able in other respects. Below, we show4 that this is in 
fact true in general, being a consequence of the isoelec-
tronic principle. 

The proof is closely related to the derivation of a 
formula5 for calculating diamagnetic shieldings in mole­
cules, also starting from the isoelectronic principle. 
According to this principle, two isoelectronic species 
have the same binding energies if they differ only by a 
change by unity in a nuclear charge. The example of 
CO vs. N2

6 is perhaps the best known; one can easily 
find others.7 Writing Z B for the charge of nucleus B, we 
express this as 

(3) Note that it is the change in Fee from atoms to molecule which 
must be approximately equal to VNN, not Vee itself as has been sometimes 
stated. 

(4) J. Goodisman, Theor. Chim. Acta, in press. 
(5) W. H. Flygare and J. Goodisman, J. Chem. Phys., 49, 3122 (1968). 
(6) J. C. Slater, "Quantum Theory of Molecules and Solids," Vol. I, 

McGraw-Hill Book Co., Inc., New York, N. Y„ 1963, p 134. 
(7) J. Berkowitz, J. Chem. Phys., 30, 858 (1959); also cf. ref 5. 
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Abstract: In the Hiickel and other methods, binding energies are calculated by subtracting the sum of orbital 
electronic energies for the molecule from the sum of orbital electronic energies for the separated atoms, and not 
considering the internuclear repulsion. Since this last may be several orders of magnitude greater than the binding 
energy, reasonable results could not be obtained without an approximate cancellation with another neglected term. 
It is shown that such a cancellation is a consequence of the isoelectronic principle (invariance of binding energy 
to change in atomic number of constituent atom). Numerical examples are given. 
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